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Abstract

In this article, we consider an infinite horizon, single product economic order quantity where demand and deterioration
rate are continuous and differentiable function of price and time, respectively. In addition, we allow for shortages and com-
pletely backlogged. The objective is to find the optimal inventory and pricing strategies maximizing the net present value of
total profit over the infinite horizon. For any given selling price, we first prove that the optimal replenishment schedule not
only exists but is unique. Next, we show that the total profit per unit time is a concave function of price when the replen-
ishment schedule is given. We then provide a simple algorithm to find the optimal selling price and replenishment schedule
for the proposed model. Finally, we use a couple of numerical examples to illustrate the algorithm.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In many inventory systems, the deterioration of goods is a realistic phenomenon. It is well known that cer-
tain products such as medicine, volatile liquids, blood bank, food stuff and many others, decrease under dete-
rioration (vaporization, damage, spoilage, dryness and so on) during their normal storage period. As a result,
while determining the optimal inventory policy of that type of products, the loss due to deterioration can not
be ignored. In the literature of inventory theory, the deteriorating inventory models have been continually
modified so as to accommodate more practical features of the real inventory systems. The analysis of deteri-
orating inventory began with Ghare and Schrader (1963), who established the classical no-shortage inventory
model with a constant rate of decay. However, it has been empirically observed that failure and life expectancy
of many items can be expressed in items of Weibull distribution. This empirical observation has prompted
researchers to represent the time to deterioration of a product by a Weibull distribution. Covert and Philip
(1973) extended Ghare and Schrader’s (1963) model and obtained an economic order quantity model for a
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variable rate of deterioration by assuming a two-parameter Weibull distribution. Researchers including Philip
(1974), Misra (1975), Tadikamalla (1978), Chakrabarty, Giri, and Chaudhuri (1998) developed economic
order quantity models which focused on this type of products. Therefore, a realistic model is the one that
treats the deterioration rate as a time varying function. Some models have been proposed for more informa-
tion, we refer the reader to Ghare and Schrader (1963) and the references therein.

Pricing is a major strategy for a seller to achieve its maximum profit. Consequently, several researchers in
operations management have studied the joint lot sizing and pricing decisions for deteriorating items. Cohen
(1977) jointly determined the optimal replenishment cycle and price for inventory that is subject to continuous
decay over time at a constant rate. Wee (1997, 1999) extended Cohen’s model to consider a Weibull distribu-
tion deterioration item with shortage. Then, Wee and Law (2001) extended Wee’s (1997) model and applied
the DCF (Discounted Cash Flow) approach to the finite planning horizon in which the replenishment cycle is
known. All the above models assumed a linear form of the price-dependent demand rate. Recently, Hwang
and Shinn (1997) addressed the joined price and lot size determination problem for an exponentially deterio-
rating product and iso-elastic demand when the vendor permits delay in payments. Mukhopadhyay, Mukher-
jee, and Chaudhuri (2004, 2005) re-established Cohen’s model (1977) by taking iso-elastic demand and a
varying deterioration rate. However, it is very restrictive to assume that the item deteriorates at a specific dis-
tribution and the demand follows a specific function. To relax these assumptions, Abad (1996, 2001) discussed
a lot-sizing problem for a product with a general deterioration function and a general demand function, allow-
ing shortages and partial backlogging. Unfortunately, he does not use the stockout cost (includes backorder
cost and the lost sale cost) in the formulation of the objective function since these costs are not easy to esti-
mate, and its immediate impact is that there is a lower service level to customers.

Companies have recognized that besides maximizing profit, customer satisfaction plays an important role
for getting and keeping a successful position in a competitive market. The proper inventory level should be set
based on the relationship between the investment in inventory and the service level. For inventory systems, the
average cost approach is more frequently used by the practitioners when the discount rate is at a negligible
level. However, as the time value of money is taken into account in the inventory systems, an alternative is
to determine the decision variables by minimizing the discounted value of all future costs (i.e., the net present
value (NPV) of total cost). Hadley (1964) compared the optimal order quantities determined by minimizing
these two different objective functions. When the discount rate is excessive, he obtained the optimal reorder
intervals with significant differences for these two models. Further, Rachamadugu (1988) developed error
bounds for EOQ model by minimizing net present value. Since the net present value is the standard method-
ology in theoretical analysis and the most frequently used method for making financial decisions, we develop a
generalized inventory model using the net present value of its total profit as the objective function to amend
the papers of Cohen (1977), Wee (1997), Wee and Law (2001), Abad (1996, 2001) and Mukhopadhyay et al.
(2004, 2005) with a view to making the model more relevant and applicable in practice. In the next section, the
assumptions and notation related to this study are presented. Then, we prove that the optimal replenishment
policy not only exists but is unique, for any given selling price. Next, we show that the net present value of
total profit is a concave function of selling price when the replenishment schedule is given. We also provide
a simple algorithm to find the optimal replenishment schedule and selling price for the proposed model. Final-
ly, we use a couple of numerical examples to illustrate the procedure of solving the model.

2. Model notation and assumptions

To develop the mathematical model of inventory replenishment policy, the notation adopted in this paper is
as below:

A = the replenishment cost per order
c = the purchasing cost per unit
s = the selling price per unit, where s > c

c1 = the holding cost per unit time
c2 = the backorder cost per unit time
r = the discount rate
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Q = the ordering quantity per cycle
t1 = the time at which the inventory level reaches zero
t2 = the length of period during which shortages are allowed
T = the length of the inventory cycle, where T = t1 + t2

I1(t) = the level of positive inventory at time t, where 0 6 t 6 t1

I2(t) = the level of negative inventory at time t, where t1 6 t 6 t1 + t2

NPV(s, t1, t2) = the net present value of total profit

In addition, the following assumptions are imposed:

1. Replenishment rate is infinite, and lead time is zero.
2. The time horizon of the inventory system is infinite.
3. The demand rate, d(s) is any non-negative, continuous, convex, decreasing function of the selling price in

[0, su].
4. The items deteriorate at a varying rate of deterioration h(t), where 0 < h(t)� 1.
5. Shortages are allowed and completely backlogged.
3. Mathematical formulation

Using above assumptions, the inventory level follows the pattern depicted in Fig. 1. To establish the total
relevant profit function, we consider the following time intervals separately, [0, t1] and [t1, t1 + t2]. During the
interval [0, t1], the inventory is depleted due to the combined effects of demand and deterioration. Hence the
inventory level is governed by the following differential equation:
dI1ðtÞ
dt
¼ �dðsÞ � hðtÞI1ðtÞ; 0 < t < t1; ð1Þ
with the boundary condition I1(t1) = 0. Solving the differential Eq. (1), we get the inventory level as
I1ðtÞ ¼ dðsÞe�gðtÞ
Z t1

t
egðuÞ du; 0 6 t 6 t1; ð2Þ
where gðzÞ ¼
R z

0
hðuÞdu. Therefore, the present value of the holding cost for the first cycle is
c1

Z t1

0

e�rtI1ðtÞdt ¼ c1dðsÞ
Z t1

0

e�rte�gðtÞ
Z t1

t
egðuÞ dudt:
Furthermore, at time t1, shortage occurs and the inventory level starts dropping below 0. During [t1, t1 + t2],
the inventory level only depends on demand and is governed by the following differential equation:
Fig. 1. Graphical representation of inventory system.
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dI2ðtÞ
dt
¼ �dðsÞ; t1 < t < t1 þ t2; ð3Þ
with the boundary condition I2(t1) = 0. Solving the differential Eq. (3), we obtain the inventory level as
I2ðtÞ ¼ �dðsÞðt � t1Þ; t1 6 t 6 t1 þ t2: ð4Þ
and the present value of the backorder cost for the first cycle is
�c2

Z t1þt2

t1

e�rtI2ðtÞdt ¼ c2dðsÞe�rðt1þt2Þðert2 � rt2 � 1Þ
r2

:

At time t = t1 + t2, all the shortages during the period t2 are backordered. With an instantaneous cash trans-
actions during sales, the present value of sales revenue for the first cycle is
s
Z t1

0

e�rtdðsÞdt � e�rðt1þt2ÞI2ðt1 þ t2Þ
� �

¼ sdðsÞ 1� e�rt1

r
þ t2e�rðt1þt2Þ

� �
:

Likewise, the order quantity and the present value of purchase cost can be obtained as
Q ¼ I1ð0Þ � I2ðt1 þ t2Þ ¼ dðsÞ
Z t1

0

egðuÞ duþ t2

� �
;

and
c½I1ð0Þ � e�rðt1þt2ÞI2ðt1 þ t2Þ� ¼ cdðsÞ
Z t1

0

egðtÞ dt þ t2e�rðt1þt2Þ
� �

;

respectively.
Now, we are ready to derive the present value of cash flows for the first cycle which comprises the present

values of the sales revenues, replenishment cost, purchase cost, holding cost and backorder cost. After some
algebraic manipulation, the present value of cash flows for the first cycle is obtained as follows:
TP ðs; t1; t2Þ ¼ ðs� cÞdðsÞ 1� e�rt1

r
þ t2e�rðt1þt2Þ

� �
� A� cdðsÞ

Z t1

0

egðtÞ � e�rt
� �

dt

� c1dðsÞ
Z t1

0

e�rte�gðtÞ
Z t1

t
egðuÞ dudt � c2dðsÞe�rðt1þt2Þðert2 � rt2 � 1Þ

r2
: ð5Þ
Let NPV(s, t1, t2) be the present values of total profit over horizon [0,1]. Then, we have
NPV ðs; t1; t2Þ ¼
X1
n¼0

TP ðs; t1; t2Þe�nrðt1þt2Þ ¼ TPðs; t1; t2Þ
X1
n¼0

e�nrðt1þt2Þ

¼ TPðs; t1; t2Þ
1� e�rðt1þt2Þ

: ð6Þ
Now, the problem is to determine s, t1 and t2 such that NPV(s, t1, t2) is maximized. To maximize the net pres-
ent value of total profit, it is necessary to solve the following three equations simultaneously:
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oNPV ðs; t1; t2Þ
ot1

¼ 1

1� e�rðt1þt2Þ

�
ðs� cÞ e�rt1 � rt2e�rðt1þt2Þ

� �
� c egðt1Þ � e�rt1
� �

:

�c1egðt1Þ
Z t1

0

e�gðtÞ�rt dt þ c2e�rðt1þt2Þðert2 � rt2 � 1Þ
r

�
dðsÞ

� re�rðt1þt2Þ

1� e�rðt1þt2Þ½ �2
ðs� cÞdðsÞ 1� e�rt1

r
þ t2e�rðt1þt2Þ

� ��

� cdðsÞ
Z t1

0

egðtÞ � e�rt
� �

dt � c1dðsÞ
Z t1

0

e�rte�gðtÞ
Z t1

t
egðuÞ dudt

� c2dðsÞe�rðt1þt2Þðert2 � rt2 � 1Þ
r2

� A
�
¼ 0; ð7Þ

oNPV ðs; t1; t2Þ
ot2

¼ e�rðt1þt2Þ

1� e�rðt1þt2Þ
ðs� cÞ � ½c2 þ rðs� cÞ�t2f gdðsÞ

� re�rðt1þt2Þ

½1� e�rðt1þt2Þ�2
ðs� cÞdðsÞ 1� e�rt1

r
þ t2e�rðt1þt2Þ

� ��

� cdðsÞ
Z t1

0

½egðtÞ � e�rt�dt � c1dðsÞ
Z t1

0

e�rte�gðtÞ
Z t1

t
egðuÞ dudt

� c2dðsÞe�rðt1þt2Þðert2 � rt2 � 1Þ
r2

� A
�
¼ 0; ð8Þ
and
oNPV ðs; t1; t2Þ
os

¼ 1

1� e�rðt1þt2Þ
½dðsÞ þ ðs� cÞd 0ðsÞ� 1� e�rt1

r
þ t2e�rðt1þt2Þ

� ��
� cd 0ðsÞ

Z t1

0

½egðtÞ � e�rt�dt � c1d 0ðsÞ
Z t1

0

e�rte�gðtÞ
Z t1

t
egðuÞ dudt

� c2d 0ðsÞe�rðt1þt2Þðert2 � rt2 � 1Þ
r2

�
¼ 0: ð9Þ
After some algebraic manipulation, Eqs. (7) and (8) reduce to the following:
c½egðt1Þþrt1 � 1� þ c1egðt1Þþrt1

Z t1

0

e�gðtÞ�rt dt ¼ ½c2 þ rðs� cÞ�ð1� e�rt2Þ
r

; ð10Þ
and
½1� e�rðt1þt2Þ�fðs� cÞ � ½c2 þ rðs� cÞ�t2gdðsÞ

� r ðs� cÞdðsÞ 1� e�rt1

r
þ t2e�rðt1þt2Þ

� �
� cdðsÞ

Z t1

0

½egðtÞ � e�rt�dt
�

�c1dðsÞ
Z t1

0

e�rte�gðtÞ
Z t1

t
egðuÞ dudt � c2dðsÞe�rðt1þt2Þðert2 � rt2 � 1Þ

r2
� A

�
¼ 0: ð11Þ
Applying Eqs. (10) and (11), we can obtain the following result.
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Theorem 1. For any given s, we have

(a) Eqs. (10) and (11) has a unique solution.

(b) The solution in (a) satisfies the second order conditions for a global maximum.

Proof. See Appendix A for details. h

From the analysis carried out so far, we know that, for any given positive s, the point (t�1; t
�
2) which maximizes

the net present value of total profit not only exists but also is unique.
Next, we study the condition under which the optimal selling price also exists and is unique. For any t�1 and

t�2, the first-order necessary condition for NPV ðsjt�1; t�2) to be maximum is
dNPV ðsjt�1; t�2Þ
ds

¼ 1

1� e�rðt�
1
þt�

2
Þ ½dðsÞ þ ðs� cÞd 0ðsÞ� 1� e�rt�

1

r
þ t�2e�rðt�

1
þt�

2
Þ

� ��
� cd 0ðsÞ

Z t�
1

0

egðtÞ � e�rt
� �

dt � c1d 0ðsÞ
Z t�

1

0

e�rte�gðtÞ
Z t�

1

t
egðuÞ dudt

� c2d 0ðsÞe�rðt�
1
þt�

2
Þðert�

2 � rt�2 � 1Þ
r2

�
¼ 0; ð12Þ
where d 0 (s) is the derivative of d(s) with respect to s. We then obtain following result.

Theorem 2. For any given values of t1 and t2, if the gross profit, (s � c)d(s), is concave (i.e., d{(s � c)d(s)}/ds is
an decreasing function of s), then there exists a unique s* which maximizes NPV(s|t1, t2).

Proof. Taking the second-order derivative of NPV (s|t1, t2) with respect to s, we obtain
d2NPV ðsjt1; t2Þ
ds2

¼ 1

1� e�rðt1þt2Þ
½2d 0ðsÞ þ ðs� cÞd 00ðsÞ� 1� e�rt1

r
þ t2e�rðt1þt2Þ

� ��
� cd 00ðsÞ

Z t1

0

egðtÞ � e�rt
� �

dt � c1d 00ðsÞ
Z t1

0

e�rte�gðtÞ
Z t1

t
egðuÞ dudt

� c2d 00ðsÞe�rðt1þt2Þðert2 � rt2 � 1Þ
r2

�
; ð13Þ
where d00 (s) is the second-order derivative of d(s) with respect to s. Since
d2ðs� cÞdðsÞ
ds2

¼ 2d 0ðsÞ þ ðs� cÞd 00ðsÞ < 0 and
d2dðsÞ
ds2

> 0;
it is clear that d2NPV(s|t1, t2)/ds2 < 0. Consequently, NPV(s|t1, t2) is a strictly concave function of s.
Therefore, there exists a unique value of s that maximizes NPV(s|t1, t2). This completes the proof. h

Because d 0 (s) < 0, it is clear from Eq. (12) that dNPV ðsjt�1; t�2Þ= ds ¼ 0 has a solution if and only if
d(s) + (s � c)d 0 (s) < 0. The solution of d(s) + (s � c)d 0 (s) = 0, say sl, is the lower bound for the optimal selling
price s* such that dNPV ðsjt�1; t�2Þ=ds ¼ 0. Note that if gross profit is an increasing function of s, then price and
gross profit will always move in the same direction, hence the retailer can realize infinite gross profit by setting
an infinite s. It is impossible.

Combining Theorems 1 and 2, we propose the following algorithm for solving the problem.

Algorithm.

Step 1 Start with j = 0 and the initial trial value of sj = sl, which is a solution to d(s) + (s � c)d 0 (s) = 0.
Step 2 Find the optimal replenishment schedule, t�1 and t�2 from Eqs. (10) and (11), for a given selling

price sj.
Step 3 Use the result in Step 2, and then determine the optimal sj+1 by Eq. (12).
Step 4 If the difference between sj and sj+1 is sufficiently small, set s* = sj+1, then (s�; t�1; t

�
2) is the optimal solu-

tion and stop. Otherwise, set j = j + 1 and go back to Step 2.
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4. Numerical example

To illustrate the results, let us apply the proposed algorithm to solve the following numerical examples. The
results can be found by applying the subrouting ‘‘FindRoot’’ in Mathematica version 4.1.

Example 1. We first redo the same example of Wee and Law (2001) to see the optimal replenishment policy
while considering time value of money. A = 80, c = 5, c1 = 0.6, c2 = 1.4, r = 0.08, d(s) = 200 � 4s, where
s 2 [0, 50] and h(t) = a · b · tb�1 = 0.05 · 1.5 · t0.5 (i.e., Weibull deterioration rate, where a is scale parameter
and b is shape parameter). Solving d(s) + (s � c)d 0(s) = 0 first, we get sl = s0 = 27.5. Then, applying the
algorithm, after 3 iterations, the optimal values of s, t1 and t2 are s* = 27.7533, t�1 ¼ 0:9638 and t�2 ¼ 0:4043,
respectively. The ordering quantity and net present value of total profit obtained here is Q* = 123.4 and
NPV* = 23861.0, respectively.

Compare with Wee and Law’s (2001) model, and choose the same value for the planning horizon, H, we
find that the H=ðt�1 þ t�2Þ ¼ 10=ð1:3681Þ ¼ 7:3094. Then the optimal number of cycle (denoted by N) is 8 or the
total number of order is 9. Over the finite horizon [0, H], since Nðt�1 þ t�2Þ ¼ 8� ð0:9638þ 0:4043Þ ¼
10:9448 > 10, we adjust per replenishment cycle by the following policy:
Table
Summ

Wee a
(200

This m
t01 ¼
H
N

t�1
t�1 þ t�2

; t02 ¼
H
N

t�2
t�1 þ t�2

and T 0 ¼ t01 þ t02:
Further, by using the adjustment policy of the time schedules above and Eq. (18) in Wee and Law (2001), we
can obtain the total net present-value profit over horizon [0,H] by the following approximation:
TPðs�; t01; t02Þ �
1� e�rH

1� e�rT 0
� A� e�rH :
In Table 1, we summarize a comparative study of the results of Wee and Law (2001) and those of the pres-
ent model. Even though the approximate profit in Wee and Law (2001) is overrated with neglecting the sec-
ond- and higher-order terms of such as the scale parameter of Weibull distribution deterioration and the
discount rate, we see that our model presents the improved profit. Furthermore, if the planning horizon is giv-
en, then the solution obtained here is a good approximation to estimate the optimal number of replenishments
to avoid using a brute force enumeration.

Example 2. We then use the some parameters given in Mukhopadhyay et al. (2004). A = 250, c = 40,
d(s) = 16 · 107 · s�3.21, where s 2 [0, 75] and h(t) = 0.05 · 2 · t2�1 = 0.1t. Besides, we take c1 = 4.50,
c2 = 5.00 and r = 0.08. By solving d(s) + (s � c)d 0 (s) = 0, we obtain sl = s0 = 58.0995. After 4 iterations, we
have s* = 59.5891, t�1 ¼ 0:2832, t�2 ¼ 0:3667, Q* = 208.4 and NPV* = 68,831.5.
5. Conclusion

In this paper, the use of NPV as the objective function for the generalized inventory system is devel-
oped. When interest rates are high, the decision based on the average profit will be inferior to the deci-
sion based on the NPV because it ignores the discount rate – the time value of money. The analytical
formulations of the problem on the general framework have been given. Furthermore, in contrast to
Wee (1997, 1999), Wee and Law (2001), and Mukhopadhyay et al. (2004, 2005), the approach in this
1
ary of the comparison between the models

Number of cycle,
N

Selling price,
s

The time interval Ordering quantity per
cycle, Q

Total net present-value
profit

t1 t2 T

nd Law
1)

8 27.7340 0.8940 0.3560 1.250 112.676 13,069.937

odel 8 27.7533 0.8806 0.3694 1.250 112.546 13,100.140
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paper provides solutions better than those obtained by using Taylor Series approximation. We can also
see that any deterioration rate can be applied to this model such as the three-parameter Weibull dete-
rioration rate (e.g., Philip, 1974) and Gamma deterioration rate (e.g., Tadikamalla, 1978). Hence, the
utilization of general price-dependent demand and deterioration rates make the scope of the application
broader.

The proposed model can be extended in several ways. First, we can easily extend the backlogging rate of
unsatisfied demand to any decreasing function b(x), where x is the waiting time up to the next replenishment,
and 0 6 b(x) 6 1 with b(0) = 1. Second, we can also incorporate the quantity discount, and the learning curve
phenomenon into the model.
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Appendix A. The proof of Theorem 1

(a) From Eq. (10), we know the LHS of Eq. (10) is a strictly increasing function in t1. Thus, for given any
t1 2 ½0;bt1�, t2 can be uniquely determined as a function of t1, that is
t2 ¼ �
1

r
ln 1�

r c½egðt1Þþrt1 � 1� þ c1egðt1Þþrt1
R t1

0 e�gðtÞ�rt dt
� 	

c2 þ rðs� cÞ

( )
; ð14Þ
where bt1 is the root of the following equation
c2 þ rðs� cÞ
r

¼ c egðbt1Þþrbt1 � 1
h i

þ c1egðbt1Þþrbt1

Z bt1

0

e�gðtÞ�rt dt:
Next, in order to prove the existence of the solution, from Eq. (10), by taking the implicit differentiation with
respect to t1, it gets
½c2 þ rðs� cÞ�e�rt2
dt2

dt1

¼ cþ c1

Z t1

0

e�gðtÞ�rt dt
� �

½hðt1Þ þ r�egðt1Þþrt1 þ c1; ð15Þ
and hence dt2/dt1 > 0.
From Eq. (11), for notational convenience, let
Gðt1Þ ¼ ½1� e�rðt1þt2Þ�fðs� cÞ � ½c2 þ rðs� cÞ�t2gdðsÞ

� r ðs� cÞdðsÞ 1� e�rt1

r
þ t2e�rðt1þt2Þ

� �
� cdðsÞ

Z t1

0

½egðtÞ � e�rt�dt
�

�c1dðsÞ
Z t1

0

e�rte�gðtÞ
Z t1

t
egðuÞ dudt � c2dðsÞe�rðt1þt2Þðert2 � rt2 � 1Þ

r2
� A

�
:

After assembling Eqs. (10) and (15), the first derivative of G(t1) with respect to t1 becomes
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dGðt1Þ
dt1

¼ re�rðt1þt2Þfðs� cÞ � ½c2 þ rðs� cÞ�t2gdðsÞ 1þ dt2

dt1


 �
� ½1� e�rðt1þt2Þ�½c2 þ rðs� cÞ�dðsÞ dt2

dt1

� r
½c2 þ rðs� cÞ�dðsÞe�rt1ð1� e�rt2Þ

r

�
� c½egðt1Þ � e�rt1 �dðsÞ � c1egðt1ÞdðsÞ

Z t1

0

e�gðtÞ�rt dt

þ c2dðsÞe�rðt1þt2Þðert2 � rt2 � 1Þ
r

1þ dt2

dt1


 �
þ ðs� cÞdðsÞe�rðt1þt2Þð1� rt2Þ 1þ dt2

dt1


 �

� c2dðsÞe�rðt1þt2Þðert2 � 1Þ
r

1þ dt2

dt1


 ��
¼ �½1� e�rðt1þt2Þ�½c2 þ rðs� cÞ�dðsÞ dt2

dt1

< 0:
Thus, G(t1) is a strictly decreasing function of t1 2 ½0;bt1�.
Further, because G(0) = rA > 0 and
lim
t1!bt�1 Gðt1Þ ¼ lim

t1!bt�1 ½1� e�rðt1þt2Þ�fðs� cÞ � ½c2 þ rðs� cÞ�t2gdðsÞ

� lim
t1!bt�1 r ðs� cÞdðsÞ 1� e�rt1

r
þ t2e�rðt1þt2Þ

� �
� cdðsÞ

Z t1

0

½egðtÞ � e�rt�dt
�

�c1dðsÞ
Z t1

0

e�rte�gðtÞ
Z t1

t
egðuÞ du dt � c2dðsÞe�rðt1þt2Þðert2 � rt2 � 1Þ

r2
� A

�
¼ ðs� cÞdðsÞ � lim

t2!1
½1� e�rðt1þt2Þ�f½c2 þ rðs� cÞ�t2gdðsÞ

� r ðs� cÞdðsÞ 1� e�rbt1

r

" #
� cdðsÞ

Z bt1

0

½egðtÞ � e�rt�dt

(

�c1dðsÞ
Z bt1

0

e�rte�gðtÞ
Z bt1

t
egðuÞ dudt � A

)
¼ �1 < 0;
the Intermediate Value Theorem implies that the root of G(t1) = 0 is unique. This completes the proof. h

(b) Since NPV ðs; t1; t2Þ ¼ TPðs; t1; t2Þ=½1� e�rðt1þt2Þ�, we know that the necessary conditions for maximum are
oNPV ðs; t1; t2Þ
ot1

¼ �re�rðt1þt2ÞTPðs; t1; t2Þ
½1� e�rðt1þt2Þ�2

þ 1

1� e�rðt1þt2Þ
oTPðs; t1; t2Þ

ot1

¼ 0;
and
oNPV ðs; t1; t2Þ
ot2

¼ �re�rðt1þt2ÞTPðs; t1; t2Þ
½1� e�rðt1þt2Þ�2

þ 1

1� e�rðt1þt2Þ
oTPðs; t1; t2Þ

ot2

¼ 0:
From Theorem 1(a), we have shown that the optimal solution for Eqs. (10) and (11) is unique, we obtain that
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oTP ðs; t1; t2Þ
ot1

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ
¼ oTP ðs; t1; t2Þ

ot2

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ
:

Using the result, we have
o2NPV ðs; t1; t2Þ
ot2

1

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ
¼ r2e�rðt1þt2ÞTP ðs; t1; t2Þ

1� e�rðt1þt2Þ½ �2

�����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

þ 1

1� e�rðt1þt2Þ
o

2TP ðs; t1; t2Þ
ot2

1

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

¼ r
1� e�rðt1þt2Þ

oTP ðs; t1; t2Þ
ot1

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

þ 1

1� e�rðt1þt2Þ
o2TP ðs; t1; t2Þ

ot2
1

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

¼ dðsÞe�rðt1þt2Þ

1� e�rðt1þt2Þ
rðs� cÞ � r c2 þ rðs� cÞ½ �t2f g

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

þ dðsÞe�rðt1þt2Þ

1� e�rðt1þt2Þ
�½c2 þ rðs� cÞ�dt2

dt1

�
þr½c2 þ rðs� cÞ�t2 � rðs� cÞ

�����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

¼ � dðsÞ½c2 þ rðs� cÞ�e�rðt1þt2Þ

1� e�rðt1þt2Þ
dt2

dt1

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ
< 0;
o2NPV ðs; t1; t2Þ
ot2

2

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ
¼ r2e�rðt1þt2ÞTP ðs; t1; t2Þ

½1� e�rðt1þt2Þ�2

�����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

þ 1

1� e�rðt1þt2Þ
o2TP ðs; t1; t2Þ

ot2
2

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

¼ r
1� e�rðt1þt2Þ

oTP ðs; t1; t2Þ
ot2

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

þ 1

1� e�rðt1þt2Þ
o2TP ðs; t1; t2Þ

ot2
2

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

¼ rdðsÞe�rðt1þt2Þ

1� e�rðt1þt2Þ
ðs� cÞ � c2 þ rðs� cÞ½ �t2f g

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

þ dðsÞe�rðt1þt2Þ

1� e�rðt1þt2Þ
f� c2 þ rðs� cÞ½ �

�r ðs� cÞ � c2 þ rðs� cÞ½ �t2f ggjðt1;t2Þ¼ðt�1;t�2Þ

¼ � dðsÞ c2 þ rðs� cÞ½ �e�rðt1þt2Þ

1� e�rðt1þt2Þ

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ
< 0;
and
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o2NPV ðs; t1; t2Þ
ot1ot2

¼ r2e�rðt1þt2ÞTP ðs; t1; t2Þ
1� e�rðt1þt2Þ½ �2

�����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

þ 1

1� e�rðt1þt2Þ
o

2TPðs; t1; t2Þ
ot2ot1

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

¼ r
1� e�rðt1þt2Þ

oTP ðs; t1; t2Þ
ot1

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

þ 1

1� e�rðt1þt2Þ
o2TPðs; t1; t2Þ

ot2ot1

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

¼ rdðsÞe�rðt1þt2Þ

1� e�rðt1þt2Þ
ðs� cÞ � c2 þ rðs� cÞ½ �t2f g

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

� rdðsÞe�rðt1þt2Þ

1� e�rðt1þt2Þ
ðs� cÞ � c2 þ rðs� cÞ½ �t2f g

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ
¼ 0:
Thus, the determinant of Hessian matrix H at the stationary point (t�1; t
�
2) is
detðHÞ ¼ o2NPV ðs; t1; t2Þ
ot2

1

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ
� o2NPV ðs; t1; t2Þ

ot2
2

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

� o
2NPV ðs; t1; t2Þ

ot1ot2

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ
� o

2NPV ðs; t1; t2Þ
ot1ot2

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ
:

¼ dðsÞ½c2 þ rðs� cÞ�e�rðt1þt2Þ

1� e�rðt1þt2Þ
dt2

dt1

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

� dðsÞ½c2 þ rðs� cÞ�e�rðt1þt2Þ

1� e�rðt1þt2Þ

����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

¼ dðsÞ½c2 þ rðs� cÞ�e�rðt1þt2Þ

1� e�rðt1þt2Þ

� �2
dt2

dt1

�����
ðt1;t2Þ¼ðt�1;t

�
2
Þ

> 0:
Hence, the Hessian matrix H at point (t�1; t
�
2) is negative definite. Consequently, we can conclude that the sta-

tionary point (t�1; t
�
2) is a global maximum for our optimization problem. This completes the proof. h
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